Attraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch.
نویسندگان
چکیده
Olfactory responses of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), a major defoliator of deciduous trees, were examined in Inner Mongolia, China. We studied whether the gypsy moth adults are attracted by the major volatile organic compounds (VOCs) of damaged Larix gmelinii (Dahurian larch) foliage and compared the attractiveness of the plant volatiles with that of the synthetic sex pheromone. Our results indicated that the VOCs of the Dahurian larch were effective in attracting gypsy moth males especially during the peak flight period. The VOCs also attracted moths significantly better than the sex pheromone of the moth. Our study is the first trial to show the responses of adult gypsy moths to volatile compounds emitted from a host plant. Electroantennogram responses of L. gmelinii volatiles on gypsy moths supported our field observations. A synergistic effect between host plant volatiles and sex pheromone was also obvious, and both can be jointly applied as a new attractant method or population management strategy of the gypsy moth.
منابع مشابه
Recent Advances in Microextraction Methods for Sampling and Analysis of Volatile Organic Compounds in Air: A Review
Human exposures to volatile organic compounds (VOCs) are associated with a wide range of health problems. Due to these adverse effects of VOCs on the human health, determination of trace levels of VOCs is very important for accurate assessment of indoor and outdoor exposure. Solid phase microextraction (SPME), needle trap device (NTD) and hollow fiber- liquid phase microextraction (HF-LPME) are...
متن کاملIdentification of volatile organic compounds of some Trichoderma species using static headspace gas chromatography-mass spectrometry
Fungi release wide spectrum of volatile organic compounds (VOCs) that belong to several chemical groups with different biochemical origins such as monoterpenes, sesquiterpenes, alcohols, aldehydes, aromatic compounds, esters, furans, ketones, sulfur and nitrogen compounds. Trichoderma species are the most studied fungal biocontrol agents and are successfully used as biofungicides and biofertili...
متن کاملSource Apportionment Of High Reactive Volatile Organic Compounds In a Region With The Massive Hydrocarbon Processing Industries
In the Persian Gulf region, conditions are highly favorable for ozone air pollution and the region is a hot spot of photochemical smog. The vast activities in processing oil and gas play a major role in it. It was found that the elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from Hydrocarbon Processing facilities lead to substantial ozone production. South Pars...
متن کاملThe concentration of volatile organic compounds (VOCs) and related factors in the air in barbershops in Sanandaj in 2016
The aim of this study was to determine the density of benzene and toluene in barbershops of Sanandaj and also to determine effective factors for this pollution. A descriptive, analytical study was conducted to measure the volatile organic compound density and determine the effective factors. In this study, five hair salons and five barber shops were randomly selected from Sanandaj city. The vol...
متن کاملIdentification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology
Fungal volatile organic compounds (VOCs) have the potential of being used as biocontrol agents for biotechnological applications in agriculture, industry and medicine. In this research, different VOCs from secondary metabolites of biocontrol fungus Trichoderma virens (6011) KP671477 were separated using n-hexane, n-butanol and methanol solvents and identified by gas chromatography–mass spectrom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Zeitschrift fur Naturforschung. C, Journal of biosciences
دوره 67 7-8 شماره
صفحات -
تاریخ انتشار 2012